Tunable band topology reflected by fractional quantum Hall States in two-dimensional lattices.
نویسندگان
چکیده
Two-dimensional lattice models subjected to an external effective magnetic field can form nontrivial band topologies characterized by nonzero integer band Chern numbers. In this Letter, we investigate such a lattice model originating from the Hofstadter model and demonstrate that the band topology transitions can be realized by simply introducing tunable longer-range hopping. The rich phase diagram of band Chern numbers is obtained for the simple rational flux density and a classification of phases is presented. In the presence of interactions, the existence of fractional quantum Hall states in both |C| = 1 and |C| > 1 bands is confirmed, which can reflect the band topologies in different phases. In contrast, when our model reduces to a one-dimensional lattice, the ground states are crucially different from fractional quantum Hall states. Our results may provide insights into the study of new fractional quantum Hall states and experimental realizations of various topological phases in optical lattices.
منابع مشابه
Reaching fractional quantum Hall states with optical flux lattices.
We present a robust scheme by which fractional quantum Hall states of bosons can be achieved for ultracold atomic gases. We describe a new form of optical flux lattice, suitable for commonly used atomic species with ground state angular momentum J(g) = 1, for which the lowest energy band is topological and nearly dispersionless. Through exact diagonalization studies, we show that, even for mode...
متن کاملRealizing Tao-Thouless-like state in fractional quantum spin Hall effect
The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum sp...
متن کاملTunable electron interactions and fractional quantum Hall States in graphene.
The recent discovery of fractional quantum Hall (FQH) states in graphene raises the question of whether the physics of graphene offers any advantages over GaAs-based materials in exploring strongly correlated states of two-dimensional electrons. Here we propose a method to continuously tune the effective electron interactions in graphene and its bilayer by the dielectric environment of the samp...
متن کاملExact multi-electronic electron-concentration dependent ground-states for disordered two-dimensional two-band systems in presence of disordered hoppings and finite on-site random interactions
We report exact multielectronic ground-states dependent on electron concentration for quantum mechanical two-dimensional disordered two-band type many body models in the presence of disordered hoppings and disordered repulsive finite Hubbard interactions, in fixed lattice topology considered provided by Bravais lattices. The obtained ground-states loose their eigenfunction character for indepen...
متن کاملThe fractional quantum Hall effect in wide quantum wells
Currently, there is a strong interest in the even-denominator fractional quantum Hall state at filling factor ν = 5/2, observed in state-of-the-art GaAs based two-dimensional electron systems. This interest stems from the potential relevance of this ground state for topological quantum computation resulting from the non-Abelian statistics its quasi-particle excitations are predicted to obey. Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 111 18 شماره
صفحات -
تاریخ انتشار 2013